CWDM Networks Reference Poster

CWDM/DWDM **REFERENCE POSTER**

mobile backhaul IMS

zonveraence SEIVICE ASSULANCE VOIP UMI 1P convergence Ethe

Standards

CWDM Characteristics

- Affordable alternative for bandwidth increase
- Limited maximum distance
- Can be easily overlaid on existing infrastructure • Typical transmitter output power : 5 dBm
- Typical signal power at receiver : > -25 dBm

ITU-T G. 694.2—Spectral Grids for WDM Applications: CWDM Wavelength Grid

- 18 wavelengths defined by ITU-T, though usually only 8 or 16 are used
- Transmitter drift tolerance: \pm 6-7 nm
- Channel spacing: 20 nm

Channel Number	Central Wavelength (nm)
1	1271
2	1291
3	1311
4	1331
5	1351
6	1371
7	1391
8	1411
9	1431
10	1451
11	1471
12	1491
13	1511
14	1531
15	1551
16	1571
17	1591
18	1611

ITU-T G. 652—Characteristics of a Singlemode Fiber and Cable

ITU-T G.695—CWDM Optical Interfaces

• Provides optical parameter values for physical layer interfaces of CWDM applications with up to 16 channels and up to 10 Gbit/s

CWDM Testing

Test	Test Instrument	Construction/Fiber Qualification	Turn-Up and Provisioning	Maintenance and Troubleshooting
Connector cleanliness according to IEC and IPC standards	Inspection probe with automatic pass/fail analysis software	\checkmark	\checkmark	\checkmark
ORL measurement	ORL testers, OTDR	\checkmark		\checkmark
Fiber, connector, splice loss	CWDM OTDR	\checkmark		\checkmark
Channel power and wavelength check	Channel analyzer, CWDM-calibrated power meter		\checkmark	\checkmark
Wavelength assignment testing	CWDM OTDR, channel analyzer		\checkmark	\checkmark
Channel wavelength, power drift testing	Channel analyzer, OSA		\checkmark	\checkmark

Is Your Network CWDM-Ready?

In most CWDM networks, C-band and L-band are used where attenuation is pretty flat with wavelength. If more than eight wavelengths are required, the S-band must be used where attenuation varies a lot, around the water peak at 1383 nm. Therefore, an appreciation of spectral loss is required. By utilizing an OTDR with four wavelengths including 1383 nm, a simple calculation yields the loss across the whole CWDM range.

CWDM Testing: CWDM OTDR

OTDR trace showing the effects of the 1550 nm wavelength going through different OADMs.

CWDM Testing: Spectral Analysis

- test DWDM over CWDM.

Assessing **Next-Gen Networks**

DWDM Networks Reference Poster

Standards

DWDM Characteristics

Best approach to maximize fiber capacity

• Extensively used in metro, long-haul and ultra-long-haul networks

ITU-T G. 694.1—Spectral Grids for WDM Applications: DWDM Frequency Grid • Defines specific wavelengths (frequencies) allowed for 12.5 GHz, 25 GHz, 50 GHz and 100 GHz channel spacing

Wavelength (nm) =Frequency (GHz)

Channel Spacing Conversion					
GHz	200	100	50	25	12.5
nm	1.6	0.8	0.4	0.2	0.1

DWDM Testing

ITU-T G.650.3—Test Methods for Installed Singlemode Optical Fiber Cable Links

• Detailed tests should be carried out on a singlemode fiber for proper operation

Recommended Tests	Test Instrument
Connector endface inspection	Inspection probe
Link attenuation	OTDR
Splice loss, splice location, fiber uniformity and cable length	OTDR
Polarization mode dispersion	PMD tester
Chromatic dispersion	CD tester
Optical return loss	ORL tester

Common Failures in DWDM Networks

Impairment	Frequency	Test Instrument
Attenuation	High	OTDR, OLTS, probes, OSA
Optical channel power changes due to gain variations	High	OSA
Frequency (or wavelength) deviation from normal	High	OSA
Polarization mode dispersion	Medium	PMD tester, distributed PMD tester
Four-wave mixing	Medium	OSA
Amplified spontaneous emission noise from optical amplifier	Medium	OSA
Chromatic dispersion, CD slope	Medium	CD tester
Reflection	Medium	OLTS, OTDR, probe
Laser noise	Medium	OSA
Interchannel crosstalk	Medium	OSA
Interferometric crosstalk	Medium	OSA
High = 10 events per year Medium = 1 event per year	I	EXFO recommendation

Source: Recommendation ITU-T G. 697. Optical Monitoring for DWDM Systems, Table 1-Optical Impairments.

DWDM Dispersion Testing

• Dispersion is an important phenomenon that must be tested in DWDM networks

- to avoid bit errors. The longer the light path, the more dispersion there is.
- EXFO recommends dispersion testing for fiber span longer than 20 km.

Chromatic Dispersion (CD)

Chromatic dispersion is a pulse broadening that occurs when different wavelengths of an optical pulse travel at different velocities in a fiber due to the variation of the fiber index of refraction with wavelength.

Polarization Mode Dispersion (PMD)

PMD is a pulse broadening that occurs when different polarization modes (fast axis and slow axis) travel at different velocities due to fiber geometric imperfections or environmental constraints (heat, mechanical stress on the fiber like bends, etc.). PMD leads to differential group delay (DGD).

CO

Bad section (must be replaced)

Traditional PMD measurement techniques provide a total link PMD value but do not locate which spans are causing the link to fail the test.

the cost-effective upgrade of a fiber network

DWDM Spectral Testing

• Spectral testing with an optical spectrum analyzer (OSA) is key to identifying many common types of failures in DWDM networks, as shown in the following table:

Definition of Optical Signal-to-Noise Ratio (OSNR)

The simplest case for an OSNR measurement is a single channel, as there is no interference coming from adjacent channels.

Importance of OSNR

Distributed PMD analysis breaks down the measurement results, effectively pinpointing the high-contributing sections of the link.

• Locates the fiber sections that are the main contributors of the total PMD of a link • Enables to isolate and repair only the worst PMD sections of the fiber cable and allows

IEC Method and (R)OADMs

• IEC method fails for signals that went through (R)OADMs • It leads to an underestimation of the noise level

IEC Method and 40G Signals

• IEC method fails for 40G signals • It leads to an overestimation of the noise level

The Solution: In-Band OSNR

• In-band OSNR method is required to measure 40G signals or signals that went through (R)OADMs • It consists in measuring the noise level inside the signal band, not out-of-band

Higher Quality of Service